Abstract

Signcryption schemes offer the possibility to simultaneously sign and encrypt a message. In order to guarantee the authentication of both signer and receiver in the most efficient way during the signcryption, certificate based solutions have been proposed in literature. We first compare into detail three recently proposed certificate based signcryption systems relying on the elliptic curve discrete logarithm problem and without the usage of compute intensive pairing operations. Next, we demonstrate how the performance of these certificate based systems can be improved by using the Elliptic Curve Qu Vanstone (ECQV) implicit certificates. What is more, generalized signcryption schemes are easily derived from these schemes and the anonymity feature of sender and receiver is already inherently included or can be very efficiently obtained without a significant additional cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.