Abstract
Scott uses an efficiently computable isomorphism in order to optimize pairing computation on a particular class of curves with embedding degree 2. He points out that pairing implementation becomes thus faster on these curves than on their supersingular equivalent, originally recommended by Boneh and Franklin for Identity Based Encryption. We extend Scott's method to other classes of curves with small embedding degree and efficiently computable endomorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.