Abstract

PurposeSpin-lock (SL) imaging allows quantification of the spin–lattice relaxation time in the rotating frame (T1ρ). B0 and B1 inhomogeneities impact T1ρ quantification because the preparatory block in SL imaging is sensitive to the field heterogeneities. Here, a modified preparatory block (PSC-SL) is proposed that attempts to alleviate SL sensitivity to field inhomogeneities in scenarios where existing approaches fail, i.e. high SL frequencies. MethodsComputer simulations, phantom and in vivo experiments were used to determine the effect of field inhomogeneities on T1ρ quantification. Existing SL preparations were compared with PSC-SL in different conditions to assess the advantages and disadvantages of each method. ResultsPhantom experiments and computer modeling demonstrate that PSC-SL provides superior T1ρ quantification at high SL frequencies in situations where the existing SL preparation methods fail. This result has been confirmed in pre-clinical neuro and body imaging at 7T. ConclusionPSC-SL complements existing methods by increasing the accuracy of T1ρ quantification at high spin-lock frequencies when large field inhomogeneities are present. A-priory information about the experimental conditions such, as field distribution and spinlock frequency are useful for selecting an appropriate spin-lock preparation for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.