Abstract

Newborn neurons are generated from neural stem cells (NSCs) in two major niches of the adult brain. Maintenance of self-renewal and multipotency of adult NSCs is controlled by multiple transcription factor networks. We show here that paired related homeobox protein Prx1 (MHox1/Prrx1) plays an important role in the maintenance of adult NSCs. Prx1 works with the transcription factor Sox2 as a coactivator, and depletion of Prx1 in cultured adult mouse NSCs reduces their self-renewal. In addition, we find that Prx1 protein is expressed in Sox2(+)/GFAP(+)/Nestin(+) astrocytes in the germinal regions of the adult mouse forebrain. The continuous expression of Prx1 in proliferating adult mouse hippocampal stem/progenitor cells in vivo leads to the generation of radial/horizontal-shaped astrocyte progenitor- and oligodendrocyte progenitor-like cells with no newborn neurons in the neurogenic niche. These data suggest that Prx1 plays an important role as a key switch for neural cell lineage determination and the maintenance of the self-renewal of adult NSCs at several stages in the adult brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.