Abstract
The paper considers the problem of optimizing the operation schedule for multiprocessor systems. The solution to this problem involves the formation of a rigid work schedule, which determines the rhythm of the processes, but in practice the functioning of systems is influenced by many side factors that make the intervals of work execution random. In the work, a semi-Markov model of the formation of a stochastic schedule in conditions of pair competition is constructed. It is shown that if during the functioning of the system it is possible to execute the items of the schedule in an arbitrary order, then the evolution of the semi-Markov process follows the Hamiltonian path. It is proved that all possible realizations of Hamiltonian paths form a complete group of incompatible events. It is noted that, due to the imposition of restrictions on the nature of evolution, the evolution process is not strictly semi-Markov, and therefore a method of forming a strictly semi-Markov process with a tree structure from the primary model is proposed. Dependences are obtained for calculating the distribution densities and the probabilities of switching from states of a semi-Markov process to conjugate states, as well as the time of walking from the starting to absorbing states. Using the concept of paired discrete competition and a distributed penalty, the effectiveness of the choice of a Hamiltonian path by one of the subjects is estimated, taking into account the fact that the algorithm of his opponent’s behavior is known up to the construction of a semi-Markov model.
Highlights
The paper considers the problem of optimizing the operation schedule for multiprocessor systems
The solution to this problem involves the formation of a rigid work schedule
which determines the rhythm of the processes
Summary
В работе построена полумарковская модель формирования стохастического расписания в условиях парного соревнования. Что если при функционировании системы возможно исполнение пунктов расписания в произвольном порядке, то эволюция полумарковского процесса проходит по гамильтонову пути. Отмечается, что вследствие наложения ограничений по характеру эволюции, процесс эволюции не является строго полумарковским, и поэтому предложен метод формирования из первичной модели, строго полумарковского процесса с древовидной структурой. Получены зависимости для расчета плотностей распределения и вероятностей переключения из состояний полумарковского процесса в сопряженные состояния, а также времени блуждания от стартового до поглощающих состояний. С использованием понятия парного дискретного соревнования и распределенного штрафа оценивается эффективность выбора гамильтонова пути одним из субъектов с учетом того, что алгоритм поведения его оппонента известен с точностью до построения полумарковской модели. Парное дискретное соревнование со свободным выбором маршрута // Чебышевский сборник, 2021, т.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.