Abstract

A new possible indirect way of testing pair symmetry in high-Tc superconductors has been set up. The degree of intrinsic gap depression at Superconductor-Insulator [S-I] interfaces required to match Ic(T)Rn(T) data in HTS Josephson junctions depends on the pair symmetry of the material itself, so that an higher fraction of d-wave symmetry for the order parameter requires less gap depression, while an higher fraction of s-wave corresponds to a larger degree of gap depression. In order to obtain a general reference value for the intrinsic amount of gap depression at S-I interfaces the de Gennes condition has been used, and resulting reduced Ic(T)Rn(T) data have been calculated in the framework of a mixed (s+id)-wave pair symmetry for the depressed order parameter ranging from pure s to pure d-wave. This model has been tentatively applied to two junctions' made of very different HTSs: YBCO and BKBO, yielding a result of almost pure d-wave for YBCO and of pure s-wave for BKBO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call