Abstract

We present a quenched mean-field (QMF) theory for the dynamics of the susceptible-infected-susceptible (SIS) epidemic model on complex networks where dynamical correlations between connected vertices are taken into account by means of a pair approximation. We present analytical expressions of the epidemic thresholds in the star and wheel graphs and in random regular networks. For random networks with a power law degree distribution, the thresholds are numerically determined via an eigenvalue problem. The pair and one-vertex QMF theories yield the same scaling for the thresholds as functions of the network size. However, comparisons with quasi-stationary simulations of the SIS dynamics on large networks show that the former is quantitatively much more accurate than the latter. Our results demonstrate the central role played by dynamical correlations on the epidemic spreading and introduce an efficient way to theoretically access the thresholds of very large networks that can be extended to dynamical processes in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.