Abstract

Based on an analysis of a specific electron trajectory in counter-propagating beams, Bell and Kirk (2008 Phys. Rev. Lett. 101 200403) recently suggested that laboratory lasers may shortly be able to produce significant numbers of electron–positron pairs. We confirm their results using an improved treatment of non-linear Compton scattering in the laser beams. Implementing an algorithm that integrates classical electron trajectories, we then examine a wide range of laser pulse shapes and polarizations. We find that counter-propagating, linearly polarized beams, with either aligned or crossed orientation, are likely to initiate a pair avalanche at intensities of approximately 1024 W cm−2 per beam. The same result is found by modelling one of the beams as a wave reflected at the surface of an overdense solid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.