Abstract

Through a simple model of particle acceleration and pair creation above the polar caps of rotation-powered pulsars, we calculate the height of the pair-formation front (PFF) and the dominant photon emission mechanism for the pulsars in the Princeton catalog. We find that for most low- and moderate-field pulsars, the height of the pair formation front and the final Lorentz factor of the primary beam is set by nonresonant inverse Compton scattering (NRICS), in the Klein-Nishina limit. NRICS is capable of creating pairs over a wide range of pulsar parameters without invoking a magnetic field more complicated than a centered dipole, although we still require a reduced radius of curvature for most millisecond pulsars. For short-period pulsars, the dominant process is curvature radiation, while for extremely high-field pulsars, it is resonant inverse Compton scattering (RICS). The dividing point between NRICS dominance and curvature dominance is very temperature-dependent; large numbers of pulsars dominated by NRICS at a stellar temperature of $10^6$ K are dominated by curvature at $10^5$ K. We apply these results to pulsar death-line calculations and to the issue of particle injection into the Crab Nebula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call