Abstract

Pair interaction energy decomposition analysis in the fragment molecular orbital (FMO) method is extended to treat density functional theory (DFT) and density-functional tight-binding (DFTB). Fluctuations of energy contributions are obtained from molecular dynamics simulations. Interactions at the DFT and DFTB levels are compared to the values obtained with Hartree-Fock, second-order Møller-Plesset (MP2), and coupled cluster methods. Hydrogen bonding in water clusters is analyzed. 200 ps NVT molecular dynamics simulations are performed with FMO for two ligands bound to the Trp-cage miniprotein (PDB 1L2Y ); the fluctuations of fragment energies and interactions are analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call