Abstract

A microscopic approach is developed to determine the excitation energetics of highly correlated quasi-particles in optically excited semiconductors based entirely on a pair-correlation function input. For this purpose, the Wannier equation is generalized to compute the energy per excited electron–hole pair of a many-body state probed by a weak pair excitation. The scheme is verified for the degenerate Fermi gas and incoherent excitons. In a certain range of experimentally accessible parameters, a new stable quasi-particle state is predicted which consists of four to six electron–hole pairs forming a liquid droplet of fixed radius. The energetics and pair-correlation features of these ‘quantum droplets’ are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.