Abstract

Recent scanning tunneling microscopy experiments of Bi(2)Sr(2)CaCu(2)O(8+delta) have shown evidence of real-space organization of electronic states at low energies in the pseudogap state [Science 303, 1995 (2004)]]. We argue based on symmetry considerations as well as model calculations that the experimentally observed modulations are due to a density wave of d-wave Cooper pairs without global phase coherence. We show that scanning tunneling microscopy measurements can distinguish a pair density wave from more typical electronic modulations such as those due to charge density wave ordering or scattering from an on site periodic potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call