Abstract

We analyze the quantum process in which a cosmic string breaks in a de Sitter (dS) background, and a pair of neutral or charged black holes is produced at the ends of the string. The energy to materialize and accelerate the pair comes from the positive cosmological constant and, in addition, from the string tension. The compact saddle point solutions without conical singularities (instantons) or with conical singularities (sub-maximal instantons) that describe this process are constructed through the analytical continuation of the dS C-metric. Then, we explicitly compute the pair creation rate of the process. In particular, we find the nucleation rate of a cosmic string in a dS background, and the probability that it breaks and a pair of black holes is produced. Finally we verify that, as occurs with pair production processes in other background fields, the pair creation rate of black holes is proportional to exp(S), where the gravitational entropy of the black hole, S, is given by one quarter of the area of the horizons present in the saddle point solution that mediates the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.