Abstract

The mechanism of pair creation in the electrosphere of compact astrophysical objects such as quark stars or neutron stars is revisited, paying attention to evaporation of electrons and acceleration of electrons and positrons, which were previously not addressed in the literature. We perform a series of numerical simulations using the Vlasov–Maxwell equations. The rate of pair creation strongly depends on electric field strength in the electrosphere. Although Pauli blocking is explicitly taken into account, we find no exponential suppression of the pair creation rate at low temperatures. The luminosity in pairs increases with temperature and it may reach up to L ± ∼ 1052 erg s−1, much larger than previously assumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call