Abstract

A closed-form analytic formula for the radial distribution function (RDF) or g(r) of inverse power fluids is proposed. The RDF is expressed as a sum of separate component functions, one monotonic and a series of exponentially damped oscillatory functions. Unlike previous treatments in the literature, this formula does not rely on patching different functional forms at arbitrary crossover distances. This expression, which we refer to as g(M)(r), yields the expected asymptotic behavior at large distance and reproduces the main features of the RDF generated by molecular dynamics (MD) simulations. The g(M) is applied to the soft n = 4 inverse power fluid, and it is shown that in this case seven or fewer terms are sufficient to represent accurately the MD-generated RDF over the entire fluid domain. The relative contributions of the separate terms of the g(M) as a function of density are analyzed and discussed. The key role played by the monotonic component function and two oscillatory terms is demonstrated. The origin of the crossover from the oscillatory to the monotonic behavior is shown to be the same as that recently proposed by Evans and Henderson [R. Evans and J. R. Henderson, J. Phys.: Condens. Matter 21, 474220 (2009)] for the dispersion interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.