Abstract

The temporal and spatial distribution of wind fields in the deep-cut gorge bridge site is complex, and the impact of different incoming flows on the structure is also essentially different. Therefore, it is essential to comprehensively consider the correlation between wind direction, wind speed, and angle of attack. The joint probability models between average wind parameters are first established using the Pair-Copula decomposition based on the field-measured data. Then, the concept of the probability-segmentation-based first order inverse reliability method (PSB-IFORM) is proposed for calculating the environmental surface of the multi-peak joint distribution model. The results show that the mixed von Mises distribution is ideal to fit the wind direction with multi-peak characteristics. The trivariate joint probability model constructed in this paper ultimately represents the correlation of average wind parameters, and the most unfavorable combination of design wind parameters can be found on the environmental surface. Furthermore, the proposed PSB-IFORM can effectively avoid the defects of the inverse first-order reliability method (IFORM) and the conservative highest probability contour (HDC) method in solving the multi-peak joint probability distribution model. This study is of particular interest to researchers and engineers engaged in wind resistance of mountain structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.