Abstract
The problem of classifying images into different predefined categories is an important high-level vision problem. In recent years, convolutional neural networks (CNNs) have been the most popular tool for image classification tasks. CNNs are multi-layered neural networks that can handle complex classification tasks if trained properly. However, training a CNN requires a huge number of labeled images that are not always available for all problem domains. A CNN pre-trained on a different image dataset may not be effective for classification across domains. In this paper, we explore the use of pre-trained CNN not as a classification tool but as a feature extraction tool for painting classification. We run an extensive array of experiments to identify the layers that work best with the problems of artist and style classification, and also discuss several novel representation and classification techniques using these features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.