Abstract
Given a composite image with photographic object and painterly background, painterly image harmonization targets at stylizing the composite object to be compatible with the background. Despite the competitive performance of existing painterly harmonization works, they did not fully leverage the painterly objects in artistic paintings. In this work, we explore learning from painterly objects for painterly image harmonization. In particular, we learn a mapping from background style and object information to object style based on painterly objects in artistic paintings. With the learnt mapping, we can hallucinate the target style of composite object, which is used to harmonize encoder feature maps to produce the harmonized image. Extensive experiments on the benchmark dataset demonstrate the effectiveness of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.