Abstract

Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

Highlights

  • Ocean acidification, caused by the uptake of anthropogenic CO2 from the atmosphere, is increasingly recognized as a serious threat to marine ecosystems [1,2]

  • A significant effect of pCO2 condition was detected, with the response of larvae reared in high pCO2 levels being significantly different to the control reared larvae when experiencing reef recording vs. no playback (Table 2; Fig 3) and reef recording vs. offshore recordings (Table 2; Fig 4); by contrast, no significant pCO2 condition effect was detected in the experiment of offshore recordings vs. no playback (Table 2; Fig 5)

  • Painted-goby larvae reared in high pCO2 levels showed an opposite response to control reared larvae, significantly avoiding reef recordings when tested against offshore recordings and spending less time

Read more

Summary

Introduction

Ocean acidification, caused by the uptake of anthropogenic CO2 from the atmosphere, is increasingly recognized as a serious threat to marine ecosystems [1,2]. Exposure to high CO2 levels can affect physiological processes [9,10]) of marine organisms, especially during their larval and juvenile stages. There is increasing evidence that larval behaviour can be disrupted by elevated CO2 levels [11,12,13]), which may affect species interactions and ecological processes [14]. Many benthic marine organisms spend an early developmental period in the pelagic environment before settling to benthic habitat at the end of this phase [15]. There are a number of sensory cues that are used for navigation and long distance orientation in the marine.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.