Abstract
Abstract Generic c = 1 four-point conformal blocks on the Riemann sphere can be seen as the coefficients of Fourier expansion of the tau function of Painlevé VI equation with respect to one of its integration constants. Based on this relation, we show that c = 1 fusion matrix essentially coincides with the connection coefficient relating tau function asymptotics at different critical points. Explicit formulas for both quantities are obtained by solving certain functional relations which follow from the tau function expansions. The final result does not involve integration and is given by a ratio of two products of Barnes G-functions with arguments expressed in terms of conformal dimensions/monodromy data. It turns out to be closely related to the volume of hyperbolic tetrahedron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.