Abstract
Painleve’s paradox occurs in the rigid-body dynamics of mechanical systems with frictional contacts at configurations where the instantaneous solution is either indeterminate or inconsistent. Dynamic jamming is a scenario where the solution starts with consistent slippage and then converges in finite time to a configuration of inconsistency, while the contact force grows unbounded. The goal of this paper is to demonstrate that these two phenomena are also relevant to the field of robotic walking, and can occur in two classical theoretical models of passive dynamic walking — the rimless wheel and the compass biped. These models typically assume sticking contact and ignore the possibility of foot slippage, an assumption which requires sufficiently large ground friction. Nevertheless, even for large friction, a perturbation that involves foot slippage can be kinematically enforced due to external forces, vibrations, or loose gravel on the surface. In this work, the rimless wheel and compass biped models are revisited, and it is shown that the periodic solutions under sticking contact can suffer from both Painleve’s paradox and dynamic jamming when given a perturbation of foot slippage. Thus, avoidance of these phenomena and analysis of orbital stability with respect to perturbations that include slippage are of crucial importance for robotic legged locomotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.