Abstract

Burgers equation is the simplest one in soliton theory, which has been widely applied in almost all the physical branches. In this paper, we discuss the Painlevé property of the (3+1)-dimensional Burgers equation, and then Bäcklund transformation is derived according to the truncated expansion of the obtained Painlevé analysis. Using the Bäcklund transformation, we find the rouge wave solutions to the equation via the multilinear variable separation approach. And we also give an exact solution obtained by general variable separation approach, which is proved to possess abundant structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.