Abstract

The Painlevé integrability of the higher-order Boussinesq equation is proved by using the standard Weiss-Tabor-Carnevale (WTC) method. The multisoliton solutions of the higher-order Boussinesq equation are obtained by introducing dependent variable transformation. The soliton molecule and asymmetric soliton of the higher-order Boussinesq equation can be constructed by the velocity resonance mechanism. Lump solution can be derived by solving the bilinear form of the higher-order Boussinesq equation. By some detailed calculations, the lump wave of the higher-order Boussinesq equation is just the bright form. These types of the localized excitations are exhibited by selecting suitable parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.