Abstract

Pain-sensing sensory neurons (nociceptors) of the dorsal root ganglia (DRG) and dorsal horn (DH) can become sensitized (hyperexcitable) in response to pathological conditions such as diabetes, which in turn may lead to the development of painful peripheral diabetic neuropathy (PDN). Because of incomplete knowledge about the mechanisms underlying painful PDN, current treatment for painful PDN has been limited to somewhat nonspecific systemic drugs that have significant side effects or potential for abuse. Recent studies have established that several ion channels in DRG and DH neurons are dysregulated and make a previously unrecognized contribution to sensitization of pain responses by enhancing excitability of nociceptors in animal models of type 1 and type 2 PDN. Furthermore, it has been reported that targeting posttranslational modification of nociceptive ion channels such as glycosylation and methylglyoxal metabolism can completely reverse mechanical and thermal hyperalgesia in diabetic animals with PDN in vivo. Understanding details of posttranslational regulation of nociceptive channel activity may facilitate development of novel therapies for treatment of painful PDN. We argue that pharmacological targeting of the specific pathogenic mechanism rather than of the channel per se may cause fewer side effects and reduce the potential for drug abuse in patients with diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.