Abstract
Demonstration of nociceptive fiber abnormality is important for diagnosing neuropathic pain and small fiber neuropathies. This is usually assessed by brief heat pulses using lasers, contact heat, or special electrodes. We hypothesized that pain-related evoked potentials to conventional surface electrical stimulation (PREPse) can index Aδ afferences despite tactile Aß fibers coactivation. PREPse may be more readily used clinically than contact heat evoked potentials (CHEPS). Twenty-eight healthy subjects. Vertex (Cz-A1/A2) recordings. Electrical stimulation of middle finger and second toe with conventional ring, and forearm/leg skin with cup, electrodes. Contact heat stimulation to forearm and leg. Compression ischemic nerve blockade. PREPse peripheral velocities were within the midrange of Aδ fibers. N1-P1 amplitude increased with pain numerical rating scale graded (0-10) electrical stimulation (n = 25) and decreased with increasing stimulation frequency. Amplitudes were unchanged by different presentation orders of four stimulation intensities. PREPse N1 (∼130 milliseconds) and N2 (∼345 milliseconds) peaks were approximately 40 milliseconds earlier than that with CHEPS. PREPse and CHEPS N1-N2 interpeak latency (∼207 milliseconds) were similar. PREPse became unrecordable with nerve blockade of Aδ fibers. PREPse earlier N1 and N2 peaks, and similar interpeak N1-N2 latencies and central conduction velocities, or synaptic delays, to CHEPS are consistent with direct stimulation of Aδ fibers. The relation of vertex PREPse amplitude and pain, or the differential effects of frequency stimulation, is similar to pain-related evoked potential to laser, special electrodes, or contact heat stimulation. The relationship to Aδ was validated by conduction velocity and nerve block. Clinical utility of PREPse compared with CHEPS needs validation in somatosensory pathways lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.