Abstract

In this study, Perez-Sanchez etal.1 developed a chemogenetic method aimed at alleviating pain in mouse models while dampening excitability in human sensory neurons. This analgesic effect was attained through the introduction of human α7 nicotinic acetylcholine receptor and glycine receptor pore domain via virus-mediated expression in sensory neurons, forming a chloride channel. The activation of this channel was made possible by specific agonists. This study highlights the potential for treating clinical pain by gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.