Abstract
We explore the relationships between the Polycyclic Aromatic Hydrocarbon (PAH) feature strengths, mid-infrared continuum luminosities, far-infrared spectral slopes, optical spectroscopic classifications, and silicate optical depths within a sample of 107 ULIRGs observed with the Infrared Spectrograph on the Spitzer Space Telescope. The detected 6.2 micron PAH equivalent widths (EQWs) in the sample span more than two orders of magnitude (0.006-0.8 micron), and ULIRGs with HII-like optical spectra or steep far-infrared spectral slopes (S_{25} / S_{60} 2.3) silicate optical depths. The far-infrared spectral slope is strongly correlated with PAH EQW, but not with silicate optical depth. In addition, the PAH EQW decreases with increasing rest-frame 24 micron luminosity. We argue that this trend results primarily from dilution of the PAH EQW by continuum emission from dust heated by a compact central source, probably an AGN. High luminosity, high-redshift sources studied with Spitzer appear to have a much larger range in PAH EQW than seen in local ULIRGs, which is consistent with extremely luminous starburst systems being absent at low redshift, but present at early epochs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.