Abstract

The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts–including ranking websites–and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. Our core solution results in a linear programming formulation, but we also provide an alternative greedy algorithm, a variant of policy iteration, which runs in polynomial time, as well. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.