Abstract

A parallel implementation based on implicitly restarted Arnoldi method (MIRAM) is proposed for calculating dominant eigenpair of stochastic matrices derived from very large real networks. Their high damping factor makes many existing algorithms less efficient, while MIRAM could be promising. Also, we apply this method in an epidemic application. We describe in this paper a stochastic model based on PageRank to simulate the epidemic spread, where a PageRank-like infection vector is calculated by MIRAM to help establish efficient vaccination strategy. MIRAM is implemented within the framework of Trilinos, targeting big data and sparse matrices representing scale-free networks, also known as power law networks. Hypergraph partitioning approach is employed to minimize the communication overhead. The algorithm is tested on a nation wide cluster of clusters Grid5000. Experiments on very large networks such as twitter and yahoo with over 1 billion nodes are conducted. With our parallel implementation, a speedup of $$27\times $$ is met compared to the sequential solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.