Abstract
The bHLH transcription factor family plays crucial roles in plant growth and development and their responses to adversity. In this study, a highly salt-induced bHLH gene, PagbHLH35 (Potri.018G141600), was identified from Populus alba × P. glandullosa (84K poplar). PagbHLH35 contains a highly conserved bHLH domain within the region of 52-114 amino acids. A subcellular localization result confirmed its nuclear localization. A yeast two-hybrid assay indicated PagbHLH35 lacks transcriptional activation activity, while a yeast one-hybrid assay indicated it could specifically bind to G-box and E-box elements. The expression of PagbHLH35 reached its peak at 12 h and 36 h time points under salt stress in the leaves and roots, respectively. A total of three positive transgenic poplar lines overexpressing PagbHLH35 were generated via Agrobacterium-mediated leaf disk transformation. Under NaCl stress, the transgenic poplars exhibited significantly enhanced morphological and physiological advantages such as higher POD activity, SOD activity, chlorophyll content, and proline content, and lower dehydration rate, MDA content and hydrogen peroxide (H2O2) content, compared to wild-type (WT) plants. In addition, histological staining showed that there was lower ROS accumulation in the transgenic poplars under salt stress. Moreover, the relative expression levels of several antioxidant genes in the transgenic poplars were significantly higher than those in the WT. All the results indicate that PagbHLH35 can improve salt tolerance by enhancing ROS scavenging in transgenic poplars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.