Abstract
Platelet-activating factor acetylhydrolase 1B (PAF-AH) inactivates the potent phospholipid platelet-activating factor (PAF) and is composed of two catalytic subunits (α1 and α2) and a dimeric regulatory subunit, LIS1. The function of the catalytic subunits in brain development remains unknown. Here we examined their effects on proliferation in the ganglionic eminences and tangential migration. In α1 and α2 catalytic subunits knockout mice we noticed an increase in the size of the ganglionic eminences resulting from increased proliferation of GABAergic neurons. Our results indicate that the catalytic subunits act as negative regulators of the Wnt signaling pathway. Overexpression of each of the PAF-AH catalytic subunits reduced the amount of nuclear beta-catenin and provoked a shift of this protein from the nucleus to the cytoplasm. In the double mutant mice, Wnt signaling increased in the ganglionic eminences and in the dorsal part of the cerebral cortex. In situ hybridization revealed increased and expanded expression of a downstream target of the Wnt pathway (Cyclin D1), and of upstream Wnt components (Tcf4, Tcf3 and Wnt7B). Furthermore, the interneurons in the cerebral cortex were more numerous and in a more advanced position. Transplantation assays revealed a non-cell autonomous component to this phenotype, which may be explained in part by increased and expanded expression of Sdf1 and Netrin-1. Our findings strongly suggest that PAF-AH catalytic subunits modulate the Wnt pathway in restricted areas of the developing cerebral cortex. We hypothesize that modulation of the Wnt pathway is the evolutionary conserved activity of the PAF-AH catalytic subunits.
Highlights
The proper functioning of the cerebral cortex relies on formation of neural networks that are composed of excitatory neurons and inhibitory interneurons
Our study revealed an unexpected activity of the Platelet-activating factor acetylhydrolase 1B (PAF-AH) catalytic subunits acting as negative regulators of the Wnt pathway
Deletion of the platelet-activating factor (PAF)-AH catalytic subunits increases the proliferation of GABAergic neurons in the ganglionic eminences and affects their migration
Summary
The proper functioning of the cerebral cortex relies on formation of neural networks that are composed of excitatory neurons and inhibitory interneurons (reviewed by Wonders and Anderson 2006). The majority of interneurons, which compose approximately 20% of cortical neurons, are born in the ganglionic eminences (GE) and migrate to the cortex using a tangential mode of migration (reviews by Marin and Rubenstein, 2001; Metin et al, 2006). Following their arrival to the cerebral cortex, the interneurons utilize radial migration to reach the proper laminar position and they intercalate in the network. Identification of molecules and pathways, which regulate the number and migration of GABAergic neurons, is of clear importance when aiming to understand the normal and diseased brain
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.