Abstract

Paeonol is a major constituent of the Chinese herb Moutan cortex radices. Recent studies report that paeonol has neuroprotective effects and improves impaired learning and memory. However, its underlying mechanisms by which paeonol contributes to synaptic transmission remain unclear. In this study, we found that paeonol increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs), but had no effect on the amplitude in rat hippocampal CA1 neurons. Similarly, the acetylcholinesterase (AChE) inhibitor rivastigmine increased the frequency of mEPSCs, but had no effect upon amplitude in rat hippocampal neurons. Rivastigmine also inhibited the delayed outward K+ currents in rat hippocampal CA1 neurons, but had no effect in nucleus ambiguus (NA) neurons. The Kv2 blocker guangxitoxin-1E increased the frequency of both mEPSCs and sEPSCs of rat hippocampal CA1 neurons, without affecting their amplitude. Our results suggest that paeonol and rivastigmine enhance spontaneous presynaptic transmitter release, which may be associated with the inhibition of the hippocampal Kv2 current and with therapeutic potential in neurotransmitter deficits found in Alzheimer's disease (AD). Moreover, our data also show that paeonol protects against Aβ25–35-induced impairment of long-term potentiation (LTP) in mouse hippocampal neurons. However, guangxitoxin-1E failed to potentiate the evoked field excitatory postsynaptic potentials (fEPSPs), LTP and Aβ25–35-induced impairment of LTP. These results indicate that paeonol may has the potential to improve learning and memory in AD. Interestingly, this effect is not involved in the inhibition of the hippocampal Kv2 current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.