Abstract

Apoptosis plays a key role in the pathogenesis of internal disc disruption (IDD); therefore, the inhibition of apoptosis may offer a novel approach for treating IDD diseases. The aim of the present study was to investigate the effects and the underlying mechanisms of paeoniflorin through the detection of relevant indicators in a rabbit model of IDD. In total, 144 rabbits were used in the study and divided into four groups (n=36 per group). Rabbits successfully modeled with IDD received an intragastric injection of 120 mg/kg·day paeoniflorin (high-dose group), 30 mg/kg·day paeoniflorin (low-dose group) or saline (model saline group), while rabbits without IDD were used as a normal control group. The apoptosis rate of disc nucleus pulposus cells was detected using flow cytometry. In addition, the expression levels of Bcl-2, Bax and caspase-9 in the disc tissues were detected using immunohistochemistry and western blot analysis prior to and following the treatment. The results indicated that the expression levels of Bax in the low- and high-dose paeoniflorin groups were significantly reduced, while the Bcl-2 expression levels were significantly increased when compared with the model saline group (P<0.01). In addition, the expression levels of cleaved caspase-3 and cleaved caspase-9 were reduced in the low- and high-dose paeoniflorin groups, as compared with the model saline group (P<0.05). Furthermore, the average apoptotic index of the high- and low-dose paeoniflorin groups was decreased when compared with the model saline group (P<0.05). In conclusion, paeoniflorin was demonstrated to inhibit the apoptosis of nucleus pulposus cells and the activation of caspase-3 and caspase-9 through the regulation of Bcl-2 family protein expression. These results provide an experimental basis for the future treatment of IDD with paeoniflorin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call