Abstract

Objective To evaluate the potential therapeutic effect of paeoniflorin on acute lung injury induced by severe acute pancreatitis (SAP) and to initially explore the possible protective mechanisms of paeoniflorin. Method The SAP lung injury rat model was established by retrograde injection of 5% sodium taurocholate to the cholangiopancreatic duct. H&E staining was used to detect pathological changes in rat lung tissue. W/D ratio method, serum amylase (AMY), and lipase activity were used to assess the degree of lung injury in rats. Oxidation indicators such as LDH, MDA, and SOD in lung tissue were measured. Levels of inflammatory factors TNF-α, IL-6, and IL-10 were measured in bronchoalveolar lavage fluid (BALF). At the same time, Western blot was used to detect the expression of related proteins in the Nrf2/ARE signaling pathway. Results In SAP rats, paeoniflorin treatment could significantly alleviate lung injury conditions such as pulmonary edema and inflammatory cell infiltration in lung tissue and reduce serum amylase and lipase activities. Paeoniflorin can reduce the content of LDH and MDA in lung tissue and increase the content of SOD. In addition, ELISA results showed that paeoniflorin could inhibit the levels of TNF-α and IL-6 in BALF and upregulate the levels of IL-10. Paeoniflorin could upregulate the expression of Nrf2/ARE signaling pathway proteins Cyt-Nrf2, HO-1, and NQO1 in lung tissue of SAP rats. Conclusion Paeoniflorin may improve acute lung injury in rats with severe pancreatitis by inhibiting inflammation and oxidative stress response. These effects may be related to activating the Nrf2/ARE signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call