Abstract

This study aimed to investigate the effects of paeoniflorin, the main active ingredient of the medicinal plant Paeonia lactiflora Pall., on the permeability of endothelial cells induced by lipopolysaccharide (LPS) and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were stimulated by LPS. Extravasated FITC-dextran reflecting permeability was assessed by multimode microplate reader, and the migration of bis-carboxyethyl-carboxyfluorescein acetoxy-methyl-labeled human acute monocytic leukemia cell line and leukemia cell line cells through HUVECs were analyzed by fluorescence microscopy. The phosphorylations of phosphatidylinositol 3-kinase (PI3K)/Akt, protein kinase C (PKC), and cofilin in HUVECs were assessed by western blotting, and the F-actin level was detected by laser scanning confocal microscopy. After LPS stimulation, inflammatory endothelial cells exhibited significantly increased permeability. Paeoniflorin (10, 30, and 100 μM) inhibited dextran extravasation and leukocyte migration through HUVECs induced by LPS in a concentration-dependent manner. Moreover, paeoniflorin was able to suppress the phosphorylations of PI3K/Akt, PKC, and cofilin, as well as F-actin reorganization in HUVECs induced by LPS. These findings revealed that paeoniflorin partly blocked LPS-induced endothelium permeability, supporting a new explanation for its anti-inflammatory effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.