Abstract
Current agricultural production methods, for example the improper use of chemical fertilizers and pesticides, create many health and environmental problems. Use of plant growth-promoting bacteria (PGPB) for agricultural benefits is increasing worldwide and also appears to be a trend for the future. There is possibility to develop microbial inoculants for use in agricultural biotechnology, based on these beneficial plant–microbe interactions. For this study, ten bacterial strains were isolated from Yongin forest soil for which in vitro plant-growth promoting trait screenings, such as indole acetic acid (IAA) production, a phosphate solubilization test, and a siderophore production test were used to select two PGPB candidates. Arabidopsis thaliana plants were inoculated with Paenibacillus yonginensis DCY84T and Micrococcus yunnanensis PGPB7. Salt stress, drought stress and heavy metal (aluminum) stress challenges indicated that P. yonginensis DCY84T-inoculated plants were more resistant than control plants. AtRSA1, AtVQ9 and AtWRKY8 were used as the salinity responsive genes. The AtERD15, AtRAB18, and AtLT178 were selected to check A. thaliana responses to drought stress. Aluminum stress response was checked using AtAIP, AtALS3 and AtALMT1. The qRT-PCR results indicated that P. yonginensis DCY84T can promote plant tolerance against salt, drought, and aluminum stress. P. yonginensis DCY84T also showed positive results during in vitro compatibility testing and virulence assay against X. oryzae pv. oryzae Philippine race 6 (PXO99). Better germination rates and growth parameters were also recorded for the P. yonginensis DCY84T Chuchung cultivar rice seed which was grown on coastal soil collected from Suncheon. Based on these results, P. yonginensis DCY84T can be used as a promising PGPB isolate for crop improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.