Abstract

Paenibacillus is a large genus of Gram-positive, facultative anaerobic, endospore-forming bacteria. The genus Paenibacillus currently comprises more than 150 named species, approximately 20 of which have nitrogen-fixation ability. The N2-fixing Paenibacillus strains have potential uses as a bacterial fertilizer in agriculture. In this study, 179 bacterial strains were isolated by using nitrogen-free medium after heating at 85 °C for 10 min from 69 soil samples collected from different plant rhizospheres in different areas. Of the 179 bacterial strains, 25 Paenibacillus strains had nifH gene encoding Fe protein of nitrogenase and showed nitrogenase activities. Of the 25 N2-fixing Paenibacillus strains, 22 strains produced indole-3-acetic acid (IAA). 21 strains out of the 25 N2-fixing Paenibacillus strains inhibited at least one of the 6 plant pathogens Rhizoctonia cerealis, Fusarium graminearum, Gibberella zeae, Fusarium solani, Colletotrichum gossypii and Alternaria longipes. 18 strains inhibited 5 plant pathogens and Paenibacillus sp. SZ-13b could inhibit the growth of all of the 6 plant pathogens. According to the nitrogenase activities, antibacterial capacities and IAA production, we chose eight strains to inoculate wheat, cucumber and tomato. Our results showed that the 5 strains Paenibacillus sp. JS-4, Paenibacillus sp. SZ-10, Paenibacillus sp. SZ-14, Paenibacillus sp. BJ-4 and Paenibacillus sp. SZ-15 significantly promoted plant growth and enhanced the dry weight of plants. Hence, the five strains have the greater potential to be used as good candidates for biofertilizer to facilitate sustainable development of agriculture.

Highlights

  • Nitrogen is an essential element to affect the yields of crops by influencing leaf area development and photosynthetic efficiency (Fang et al, 2018)

  • The results showed that all of them except for Paenibacillus sp

  • 179 bacterial strains were isolated by their growth on nitrogen-free medium from plant rhizospheres all over China. 16S rRNA sequence analysis showed that 25 of 179 bacteria belonged to Paenibacillus genus

Read more

Summary

Introduction

Nitrogen is an essential element to affect the yields of crops by influencing leaf area development and photosynthetic efficiency (Fang et al, 2018). The application of chemical nitrogen fertilizer can improve soil fertility and agricultural production. High rates of nitrogen fertilizer might boost yields, but can reduce the quality of agricultural products. Approximately 100 Tg chemical nitrogen is applied in agricultural products every year, while only 17 Tg nitrogen is accounted for in crops (Erisman et al, 2008). Excessive use of chemical fertilizer has resulted in seriously negative impacts, such as soil. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.