Abstract

Ammonia (NH3) emissions from animal manure are a significant environmental and public concern. Despite the numerous studies regarding NH3 emissions from manure, few of them have considered microbial nitrification approaches, especially fungal nitrification. In this study, a filamentous fungus was isolated from chicken manure and was used for nitrification. The species was Paecilomyces variotii by morphological characteristics and 18S rDNA gene sequencing. It played the biggest role in the removal of ammonium at pH 4.0–7.0, C/N ratio of 10–40, temperature of 25–37°C, shaking speed of 150 rpm, and with glucose as the available carbon source. Further analysis revealed that all ammonium was removed when the initial ammonium concentration was less than 100 mg/L; 40% ammonium was removed when the initial ammonium concentration was 1100 mg/L. The results showed that the concentration of ammonia from chicken manure with strain Paecilomyces variotii was significantly lower than that in the control group. We concluded that Paecilomyces variotii has good potential for future applications in in situ ammonium removal as well as ammonia emissions control from poultry manure.

Highlights

  • Ammonia (NH3) emissions are a public and environmental concern in part because they harm human and animal health, and because ammonia forms small aerosol particles and causes ecosystem acidity [1]

  • Farming is the primary source of atmospheric NH3 especially in areas with intensive livestock farming [2], and domestic animal manure storage and application areas are the most important sources of NH3 [2,3]

  • A 250 mL Erlenmeyer flask with 80 mL sterile saline and some sanitized glass beads was inoculated with 10 g of chicken manure from a breeding facility of the Chinese Academy of Agricultural Sciences (CAAS, Beijing, China) with permission and witness of the staff–in-charge of the breeding facility and oscillated on an incubator shaker at 180 rotations per minute for 30 min

Read more

Summary

Introduction

Ammonia (NH3) emissions are a public and environmental concern in part because they harm human and animal health, and because ammonia forms small aerosol particles and causes ecosystem acidity [1]. Reducing NH3 emissions from manure is an urgent issue to protect the environment and maintain health. Extensive studies on techniques to control NH3 emissions from animal manure have focused on in vivo and in vitro aspects. Nutritional means [4,5], functional additives and probiotics [6,7] are the most common strategies used as in vivo tools to reduce NH3 emissions. Physicochemical processes and biological treatments are available to remove NH3.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.