Abstract

AbstractIn this work, we set up a theory of p-adic modular forms over Shimura curves over totally real fields which allows us to consider also non-integral weights. In particular, we define an analogue of the sheaves of kth invariant differentials over the Shimura curves we are interested in, for any p-adic character. In this way, we are able to introduce the notion of overconvergent modular form of any p-adic weight. Moreover, our sheaves can be put in p-adic families over a suitable rigid analytic space, that parametrizes the weights. Finally, we define Hecke operators, including the U operator, that acts compactly on the space of overconvergent modular forms. We also construct the eigencurve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.