Abstract

A generalization of McEliece's theorem on the p-adic valuation of Hamming weights of words in cyclic codes is proved in this paper by means of counting polynomial techniques introduced by Wilson along with a technique known as trace-averaging introduced here. The original theorem of McEliece concerned cyclic codes over prime fields. Delsarte and McEliece later extended this to Abelian codes over finite fields. Calderbank, Li, and Poonen extended McEliece's original theorem to cover cyclic codes over the rings Zopf <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sup> , Wilson strengthened their results and extended them to cyclic codes over Zopf <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sup> , and Katz strengthened Wilson's results and extended them to Abelian codes over Zopf <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sup> . It is natural to ask whether there is a single analogue of McEliece's theorem which correctly captures the behavior of codes over all finite fields and all rings of integers modulo prime powers. In this paper, this question is answered affirmatively: a single theorem for Abelian codes over Galois rings is presented. This theorem contains all previously mentioned results and more

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call