Abstract

Pad printing as a technique for preparing the active layer in polymer solar cells is presented. The technique employs a silicone rubber stamp to pick up the motif from a gravure plate and transfer it to the substrate. The strengths and limitations of pad printing are discussed and polymer solar cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver paste back electrode. The P3MHOCT was converted to poly(3-carboxy-dithiophene) (P3CT) in situ by heating the film to 200 ∘ C for a brief period. The entire printing and device preparation was carried out in the ambient atmosphere and the devices obtained had a good stability in air during storage and operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call