Abstract

Using Nuttall's compact formula for the [ n, n − 1] Pad'e approximant, the authors show that there is a natural connection between the Padé approximants of a series of Stieltjes and orthogonal polynomials. In particular, we obtain the precise error formulas. The [ n, n − 1] Padé approximant in this case is just a Gaussian quadrature of the Stieltjes integral. Hence, analysis of the error is now possible and under very mild conditions it is shown that the [ n, n + j], j ⩾ − 1, Padé approximants converge to the Stieltjes integral.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.