Abstract

Sweet cherry (Prunus avium L.) is an important fruit crop in which fruit size is strongly associated with commercial value; few genes associated with fruit size have, however, been identified in sweet cherry. Members of the CYP78A subfamily, a group of important cytochrome P450s, have been found to be involved in controlling seed size and development in Arabidopsis thaliana, rice, soybean, and tomato. However, the influence of CYP78A members in controlling organ size and the underlying molecular mechanisms in sweet cherry and other fruit trees remains unclear. Here, we characterized a P. avium CYP78A gene PaCYP78A9 that is thought to be involved in the regulation of fruit size and organ development using overexpression and silencing approaches. PaCYP78A9 was significantly expressed in the flowers and fruit of sweet cherry. RNAi silencing of PaCYP78A9 produced small cherry fruits and PaCYP78A9 was found to affect fruit size by mediating mesocarp cell proliferation and expansion during fruit growth and development. Overexpression of PaCYP78A9 in Arabidopsis resulted in increased silique and seed size and PaCYP78A9 was found to be highly expressed in the inflorescences and siliques of transgenic plants. Genes related to cell cycling and proliferation were downregulated in fruit from sweet cherry TRV::PaCYP78A9-silencing lines, suggesting that PaCYP78A9 is likely to be an important upstream regulator of cell cycle processes. Together, our findings indicate that PaCYP78A9 plays an essential role in the regulation of cherry fruit size and provide insights into the molecular basis of the mechanisms regulating traits such as fruit size in P. avium.

Highlights

  • Sweet cherry (Prunus avium L.) is an economically valuable horticultural crop that is widely cultivated in temperate regions; its fleshy fruits are recognized as having nutraceutical properties and antioxidant activity (Li et al, 2010)

  • Our results provide direct evidence that PaCYP78A9 is involved in the regulation of fruit size; these results further contribute to an understanding of the cellular basis and genetic regulation of sweet cherry fruit size and development that may assist in the generation of new lines in the future with increased yield

  • To understand the cellular and molecular mechanism underlying fruit size in sweet cherry (P. avium), the peach genome v.2.1 sequence released by the International Peach Genome Initiative (GDR database1) was used to isolate the PaCYP78A9 gene from P. avium

Read more

Summary

Introduction

Sweet cherry (Prunus avium L.) is an economically valuable horticultural crop that is widely cultivated in temperate regions; its fleshy fruits are recognized as having nutraceutical properties and antioxidant activity (Li et al, 2010). Additional insight into the genetic and molecular mechanisms responsible for controlling sweet cherry fruit should, help to inform strategies to acquire larger fruit. While several previous studies have determined that fruit size is controlled by multiple genetic loci in sweet cherry and other horticultural fruit trees (Zhang et al, 2010; Rosyara et al, 2013; Campoy et al, 2015), only a few genes related to the molecular mechanisms regulating. Several studies have suggested that organ size, including seed and fruit size, is controlled by multiple factors such as plant hormones, ubiquitin, microRNAs, and cytochrome P450s (CYPs) (Fang et al, 2012; Nitsch et al, 2012; Du et al, 2014; Ma et al, 2015, 2016; Yao et al, 2015). MicroRNA172 (miRNA172) governs floral organ development and organ size by inhibiting translation of APETALA2 (AP2) (Yao et al, 2015)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call