Abstract
Mitochondria-associated endoplasmic reticulum membrane (MAM) may have a role in tubular injury in diabetic nephropathy (DN), but the precise mechanism remains unclear. Here, we demonstrate that the expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a critical regulator of MAM formation, is significantly decreased in renal tubules of patients with DN, and PACS-2 expression is positively correlated with renal function and negatively correlated with degrees of tubulointerstitial lesions. Conditional deletion of Pacs-2 in proximal tubules (PTs) aggravates albuminuria and tubular injury in a streptozotocin-induced mouse model of diabetes. Mitochondrial fragmentation, MAM disruption, and defective mitophagy accompanied by altered expression of mitochondrial dynamics and mitophagic proteins, including Drp1 and Becn1, are observed in tubules of diabetic mice; these changes are more pronounced in PT-specific Pacs-2 knockout mice. In vitro, overexpression of PACS-2 in HK-2 cells alleviates excessive mitochondrial fission induced by high glucose concentrations through blocking mitochondrial recruitment of DRP1 and subsequently restores MAM integrity and enhances mitophagy. Mechanistically, PACS-2 binds to BECN1 and mediates the relocalization of BECN1 to MAM, where it promotes the formation of mitophagosome. Together, these data highlight an important but previously unrecognized role of PACS-2 in ameliorating tubular injury in DN by facilitating MAM formation and mitophagy.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.