Abstract

Despite recent abundance of data on drug-coated balloon technology, the biological effects of paclitaxel coated balloon (PCB) treatment followed by bare metal stent (BMS) implantation in peripheral arteries (simulating bail-out stenting, a common clinical scenario), have not been published. PCB technology containing a paclitaxel-iopromide coating and identical iopromide-coated controls (without paclitaxel) were used in 16 porcine ilio-femoral arteries. The biological effects of inflating one (PCBx1) or two sequential (PCBx2) paclitaxel coated balloons before BMS implantation were compared to the single application of a control balloon (CCBx1; contrast coated balloons). At 30 days PCBx2 displayed significantly reduced late lumen loss by angiography (58% reduction vs. CCBx1; p=0.04) and neointimal area by histomorphometry (35% reduction vs. CCBx1 and 30% vs. PCBx1; p=0.02). Similarly, percent area stenosis in the PCBx2 group was reduced by 45% as compared to CCBx1 and PCBx1 (p=0.04). At this time, all parameters of vessel wall healing (including injury score, inflammation, and endothelialisation) following drug coated balloon treatment were comparable to the control group. Paclitaxel delivery to porcine ilio-femorals using PCB followed by BMS implantation effectively decreased neointimal proliferation. More extensive and prolonged proliferative response of the vessel after stenting (necessitating higher drug dose) could potentially explain the undetectable effect of PEBx1 relative to CCBx1 in this pilot study. Histological analysis confirmed the safety and biocompatibility of PCB technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call