Abstract

Plant cells catalyze multiple-step reactions of secondary metabolite biosynthesis, and selectively synthesize chiral compounds with polycyclic structures. Taking advantage of this characteristic, we studied the production of the anticancer drug paclitaxel, which is currently produced in limited supply. Callus culture investigations indicate that woody plant medium supplemented with 10(-5) mol L(-1) 1-naphthylacetic acid and without the NH4+ -type ion is the best condition for growth of the callus. The accumulation of paclitaxel and related taxanes in Taxus plants is thought to be a biological response to specific external stimuli. Several signal transducers were screened; taxane biosynthesis was strongly promoted by methyl jasmonate (MeJA) and silver thiosulfate (STS) as an anti-ethylene compound. Of ten taxane-type diterpenoids isolated from T. baccata suspension-cultured cells treated with MeJA, five have a phenylisoserine side-chain at the C-13 position of the taxane skeleton. Time-course analysis revealed two regulatory steps in taxane biosynthesis: the taxane-ring formation step and the acylation step of the C-13 position. Methyl jasmonate promoted the formation of the taxane-ring. The production of paclitaxel reached a maximum level of 295 mg L(-1) in a large-scale culture of T. x media cells using a two-stage process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call