Abstract
Electrospun composite nanofibrous scaffolds have been regarded as a potential carrier for local drug delivery to prevent tumor recurrence. Herein, a model drug (paclitaxel) was creatively loaded into lignin nanoparticles (PLNPs) and then encapsulated into the polymer of poly (vinyl alcohol)/polyvinyl pyrrolidone which has been fabricated into a composite nanofibrous membrane (PVA/PVP-PLNPs) for use as a drug carrier using the electrospinning technique. The fabricated PVA/PVP-PLNPs membranes exhibited good particle distribution, mechanical properties, thermal stability and biocompatibility. In vitro experiments showed that combining lignin nanoparticles by electrospinning not only improved the drug release profile, but also enhanced the hydrophilicity of nanofibrous membranes which was beneficial to cell adhesion and proliferation. Cellular experiments demonstrated that PVA/PVP-2%PLNPs membrane showed good cell inhibition ability, and the cell survival rate was only 21% at day 7. It indicates that the as-prepared PVA/PVP-PLNPs composite nanofibers are promising candidates for local anticancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.