Abstract
ObjectiveMalignant pleural mesothelioma is a lethal malignancy with poor survival and high local recurrence rates despite multimodal therapy with cytoreduction and chemoradiation. We evaluated the antitumor efficacy of a paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) in 2 clinically relevant murine xenograft models of malignant pleural mesothelioma. MethodsLuciferase-transfected MSTO-211H human mesothelioma cells were injected into the thoracic cavity of immunodeficient Nu/J mice. Tumor burden was monitored by bioluminescent imaging. Animals were randomized into 2 models of disease treatment chemotherapy with PTX-eNPs alone delivered locally for early limited disease or cytoreductive surgery plus local PTX-eNP chemotherapy for advanced disease. Within each disease model, anti-tumor efficacy of PTX-eNP was compared against standard formulation paclitaxel and drug-empty nanoparticles. Influence on survival was calculated. Fluorescently labeled PTX-eNPs and immunohistochemistry evaluated in vivo drug localization to tumor. ResultsIntrathoracic injection of MSTO-211H resulted in large tumor deposits distributed within the pleural space of the murine thoracic cavity. Local multidose treatment with PTX-eNPs alone in limited stage disease more than doubled survival compared with drug-empty nanoparticles (P ≤ .0001) and standard formulation paclitaxel (P = .0004). In the model of advanced disease, local multidose treatment with PTX-eNPs following cytoreductive surgery also prolonged survival by 126% and 69.4% compared with drug-empty nanoparticles (P = .0018) and standard formulation paclitaxel (P = .03457), respectively. Immunohistology demonstrated PTX-eNP accumulation within tumor cells in vitro and in vivo. ConclusionsLocal delivery of paclitaxel via eNPs confers prolonged survival in a murine model of malignant pleural mesothelioma as single modality treatment for limited disease and in combination with cytoreductive surgery for advanced disease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.