Abstract

Oral cavity cancer is common worldwide. Furthermore, the epidermal growth factor receptor (EGFR) signaling pathway is considered to be constitutively activated in oral cancers. Paclitaxel is widely accepted as an antitumor drug as it effectively inhibits the cell cycle. This study predominantly explores the possible molecule mechanism of paclitaxel on oral cancer treatment. Cell viability was first detected using an MTT assay. Cell apoptosis was examined by Hoechst staining and flow cytometry using an annexin-V and propidium iodide kit. Specific EGFR signaling pathways were further explored through western blot analysis. Abnormal protein expression levels were determined via immunofluoresence. Additionally, the protein levels of matrix metalloproteinase (MMP)-2 and 9 were determined using ELISA. Paclitaxel significantly inhibited oral cancer cell viability in a time- and dose-dependent manner. Paclitaxel also enhanced oral cancer cell apoptosis via increased Bim and Bid protein expression. Furthermore, paclitaxel was observed to inhibit oral cancer cell proliferation through increased MMP-2 and MMP-9 protein levels. Paclitaxel inhibited the growth of the oral cancer cell line, tea8113 malignant proliferation and enhanced tea8113 cell apoptosis through inhibiting the EGFR signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call