Abstract
Poor water solubility and adverse side effects pose a challenge for clinical application of paclitaxel (PTX). In this work, a series of PTX dimers are synthesized by coupling two PTX molecules with dicarboxylic acids. As-synthesized PTX dimers form stable nanoparticles in aqueous solution without using any surfactants or adjuvants, and the solubility of PTX in water increases by 2500-fold compared to that of free PTX. These nanoparticles with high content of PTX are internalized by cancer cells and exhibit comparable cytotoxicity with Taxol. Furthermore, when the PTX dimers are incorporated into methoxypoly(ethylene glycol)2K–block-poly(d, l-lactide)2K (PEG-PDLLA) micelles, the loading content of PTX dimers is as high as 85wt%. The formed nanoparticles possess the high stability in biological conditions. Both in vitro and in vivo experiments show that these (PTX dimer)/PEG-PDLLA formulations possess effective cellular uptake and potent cytotoxicity, and exhibit reduced systemic toxicity and enhanced antitumor efficacy towards human cervical tumor. We believe these PTX dimers-based nanoparticles would be an alternative formulation for PTX, and such drug dimer assembling behaviors could be extended to other therapeutic agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.